Maspin influences response to doxorubicin by changing the tumor microenvironment organization.
نویسندگان
چکیده
Altered degradation and deposition of extracellular matrix are hallmarks of tumor progression and response to therapy. From a microarray supervised analysis on a dataset of chemotherapy-treated breast carcinoma patients, maspin, a member of the serpin protease inhibitor family, has been the foremost variable identified in non-responsive versus responsive tumors. Accordingly, in a series of 52 human breast carcinomas, we detected high maspin expression in tumors that progressed under doxorubicin (DXR)-based chemotherapy. Our analysis of the role of maspin in response to chemotherapy in human MCF7 and MDAMB231 breast and SKOV3 ovarian carcinoma cells transfected to overexpress maspin and injected into mice showed that maspin overexpression led to DXR resistance through the maspin-induced collagen-enriched microenvironment and that an anti-maspin neutralizing monoclonal antibody reversed the collagen-dependent DXR resistance. Impaired diffusion and decreased DXR activity were also found in tumors derived from Matrigel-embedded cells, where abundant collagen fibers characterize the tumor matrix. Conversely, liposome-based DXR reached maspin-overexpressing tumor cells despite the abundant extracellular matrix and was more efficient in reducing tumor growth. Our results identify maspin-induced accumulation of collagen fibers as a cause of disease progression under DXR chemotherapy for breast cancer. Use of a more hydrophilic DXR formulation or of a maspin inhibitor in combination with chemotherapy holds the promise of more consistent responses to maspin-overexpressing tumors and dense-matrix tumors in general.
منابع مشابه
Changing Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis
Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...
متن کاملMaspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis.
Emerging evidence indicates that tumor-associated proteolytic remodeling of bone matrix may underlie the capacity of tumor cells to colonize and survive in the bone microenvironment. Of particular importance, urokinase-type plasminogen activator (uPA) has been shown to correlate with human prostate cancer (PC) metastasis. The importance of this protease may be related to its ability to initiate...
متن کاملMaspin Gene Expression in Invasive Ductal Carcinoma of Breast
Background: The breast cancer is the most prevalent cancer among women, on the other hand absence of myoepithelial cells play a pivotal role in pathogenesis of this cancer. Thus we aimed to investigate the possible abilities of the molecular assay technique to find a relationship between mammary serine protease inhibitor (Maspin) gene expression possibly secreted by my...
متن کاملAn in silico model to demonstrate the effects of Maspin on cancer cell dynamics.
Most cancer treatments efficacy depends on tumor metastasis suppression, where tumor suppressor genes play an important role. Maspin (Mammary Serine Protease Inhibitor), an non-inhibitory serpin has been reported as a potential tumor suppressor to influence cell migration, adhesion, proliferation and apoptosis in in vitro and in vivo experiments in last two decades. Lack of computational invest...
متن کاملSubstrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression
The physical properties of the extracellular matrix (ECM), such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of cancer
دوره 134 12 شماره
صفحات -
تاریخ انتشار 2014